Geometry of the Copositive and Completely Positive Cones
نویسنده
چکیده
The copositive cone, and its dual the completely positive cone, have useful applications in optimisation, however telling if a general matrix is in the copositive cone is a co-NP-complete problem. In this paper we analyse some of the geometry of these cones. We discuss a way of representing all the maximal faces of the copositive cone along with a simple equation for the dimension of each one. In doing this we show that the copositive cone has faces which are isomorphic to positive semidefinite cones. We also look at some maximal faces of the completely positive cone and find their dimensions. Additionally we consider extreme rays of the copositive and completely positive cones and show that every extreme ray of the completely positive cone is also an exposed ray, but the copositive cone has extreme rays which are not exposed rays.
منابع مشابه
Symmetric Tensor Approximation Hierarchies for the Completely Positive Cone
In this paper we construct two approximation hierarchies for the completely positive cone based on symmetric tensors. We show that one hierarchy corresponds to dual cones of a known polyhedral approximation hierarchy for the copositive cone, and the other hierarchy corresponds to dual cones of a known semidefinite approximation hierarchy for the copositive cone. As an application, we consider a...
متن کاملChapter 8 Copositive Programming
A symmetric matrix S is copositive if yT S y≥0 for all y≥0, and the set of all copositive matrices, denoted C∗, is a closed, pointed, convex cone; see [25] for a recent survey. Researchers have realized how to model many NP-hard optimization problems as copositive programs, that is, programs over C∗ for which the objective and all other constraints are linear [7, 9, 13, 16, 32–34]. This makes c...
متن کاملRepresenting quadratically constrained quadratic programs as generalized copositive programs
We show that any nonconvex quadratically constrained quadratic program (QCQP) can be represented as a generalized copositive program. In fact, we provide two representations. The first is based on the concept of completely positive (CP) matrices over second order cones, while the second is based on CP matrices over the positive semidefinte cone. Our analysis assumes that the feasible region of ...
متن کاملPositive and completely positive cones and Z-transformations
A well-known result of Lyapunov on continuous linear systems asserts that a real square matrix A is positive stable if and only if for some symmetric positive definite matrix X, AX + XA is also positive definite. A recent result of Moldovan-Gowda says that a Z-matrix A is positive stable if and only if for some symmetric strictly copositive matrix X, AX + XA is also strictly copositive. In this...
متن کاملOn the computational complexity of membership problems for the completely positive cone and its dual
Copositive programming has become a useful tool in dealing with all sorts of optimisation problems. It has however been shown by Murty and Kabadi [K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Mathematical Programming, 39, no.2:117–129, 1987] that the strong membership problem for the copositive cone, that is deciding whether or not a given matrix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011